Source code for samgis_core.prediction_api.sam_onnx2

"""
Define a machine learning model executed by ONNX Runtime (https://onnxruntime.ai/)
for Segment Anything (https://segment-anything.com).
Modified from
- https://github.com/vietanhdev/samexporter/
- https://github.com/AndreyGermanov/sam_onnx_full_export/

Copyright (c) 2023 Viet Anh Nguyen, Andrey Germanov
Copyright (c) 2024-today Alessandro Trinca Tornidor

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from numpy import array as np_array, pad as np_pad, zeros, ndarray, concatenate, float32
from onnxruntime import get_available_providers, InferenceSession

from samgis_core import app_logger
from samgis_core.utilities.constants import DEFAULT_INPUT_SHAPE
from samgis_core.utilities.type_hints import ListDict, EmbeddingPILImage, PIL_Image
from samgis_core.utilities.utilities import convert_ndarray_to_pil, apply_coords


[docs] class SegmentAnythingONNX2: """ Segmentation model using SegmentAnything. Compatible with onnxruntime 1.17.x and later """ def __init__(self, encoder_model_path: str, decoder_model_path: str) -> None: self.target_size = DEFAULT_INPUT_SHAPE[1] self.input_size = DEFAULT_INPUT_SHAPE # Load models providers = get_available_providers() # Pop TensorRT Runtime due to crashing issues # TODO: Add back when TensorRT backend is stable providers = [p for p in providers if p != "TensorrtExecutionProvider"] if providers: app_logger.info( "Available providers for ONNXRuntime: %s", ", ".join(providers) ) else: app_logger.warning("No available providers for ONNXRuntime") self.encoder_session = InferenceSession( encoder_model_path, providers=providers ) self.encoder_input_name = self.encoder_session.get_inputs()[0].name app_logger.info("encoder_input_name:", self.encoder_input_name) self.decoder_session = InferenceSession( decoder_model_path, providers=providers )
[docs] @staticmethod def get_input_points(prompt: ListDict): """Get input points""" points = [] labels = [] for mark in prompt: if mark["type"] == "point": points.append(mark["data"]) labels.append(mark["label"]) elif mark["type"] == "rectangle": points.append([mark["data"][0], mark["data"][1]]) # top left points.append( [mark["data"][2], mark["data"][3]] ) # bottom right labels.append(2) labels.append(3) points, labels = np_array(points), np_array(labels) return points, labels
[docs] def encode(self, img: PIL_Image | ndarray) -> EmbeddingPILImage: """ Calculate embedding and metadata for a single image. Args: img: input image to embed Returns: embedding image dict useful to store and cache image embeddings """ resized_image = self.preprocess_image(img) padded_input_tensor = self.padding_tensor(resized_image) # 2. GET IMAGE EMBEDDINGS USING IMAGE ENCODER outputs = self.encoder_session.run(None, {"images": padded_input_tensor}) image_embedding = outputs[0] img = convert_ndarray_to_pil(img) return { "image_embedding": image_embedding, "original_size": img.size, "resized_size": resized_image.size }
[docs] def predict_masks(self, embedding: EmbeddingPILImage, prompt: ListDict): """ Predict masks for a single image. """ input_points, input_labels = self.get_input_points(prompt) # Add a batch index, concatenate a padding point, and transform. onnx_coord = concatenate([input_points, np_array([[0.0, 0.0]])], axis=0)[None, :, :] onnx_label = concatenate([input_labels, np_array([-1])], axis=0)[None, :].astype(float32) onnx_coord = apply_coords(onnx_coord, embedding) orig_width, orig_height = embedding["original_size"] app_logger.info(f"onnx_coord:{onnx_coord}.") # RUN DECODER TO GET MASK onnx_mask_input = zeros((1, 1, 256, 256), dtype=float32) onnx_has_mask_input = zeros(1, dtype=float32) output_masks, _, _ = self.decoder_session.run(None, { "image_embeddings": embedding["image_embedding"], "point_coords": onnx_coord, "point_labels": onnx_label, "mask_input": onnx_mask_input, "has_mask_input": onnx_has_mask_input, "orig_im_size": np_array([orig_height, orig_width], dtype=float32) }) return output_masks
[docs] def preprocess_image(self, img: PIL_Image | ndarray): """Resize image preserving aspect ratio using 'output_size_target' as a long side""" from PIL import Image app_logger.info(f"image type:{type(img)}, shape/size:{img.size}.") try: orig_width, orig_height = img.size except TypeError: img = Image.fromarray(img) orig_width, orig_height = img.size resized_height = self.target_size resized_width = int(self.target_size / orig_height * orig_width) if orig_width > orig_height: resized_width = self.target_size resized_height = int(self.target_size / orig_width * orig_height) img = img.resize((resized_width, resized_height), Image.Resampling.BILINEAR) return img
[docs] def padding_tensor(self, img: PIL_Image | ndarray): # Prepare input tensor from image tensor_input = np_array(img) resized_width, resized_height = img.size # Normalize input tensor numbers mean = np_array([123.675, 116.28, 103.53]) std = np_array([[58.395, 57.12, 57.375]]) tensor_input = (tensor_input - mean) / std # Transpose input tensor to shape (Batch,Channels,Height,Width tensor_input = tensor_input.transpose(2, 0, 1)[None, :, :, :].astype(float32) # Make image square self.target_size x self.target_size by padding short side by zeros tensor_input = np_pad(tensor_input, ((0, 0), (0, 0), (0, 0), (0, self.target_size - resized_width))) if resized_height < resized_width: tensor_input = np_pad(tensor_input, ((0, 0), (0, 0), (0, self.target_size - resized_height), (0, 0))) return tensor_input